Supplemental Material

Estimated Acute Effects of Ambient Ozone and Nitrogen Dioxide on Mortality in the Pearl River Delta of Southern China

Yebin Tao, Wei Huang, Xiaoliang Huang, Liuju Zhong, Shou-En Lu, Yi Li, Lingzhen Dai, Yuanhang Zhang, Tong Zhu

Table of Contents:

Supplemental Material, Table 1. Effect estimates (%, 95% CI) of O₃, NO₂ and PM₁₀ on total, cardiovascular and respiratory mortality per IQR increase in lag 1-2 day concentrations, using city-merged data.

Supplemental Material, Table 2. Effect estimates (%, 95% CI) of O₃, NO₂ and PM₁₀ on subcategories of cardiovascular and respiratory mortality per 10μg/m³increase in lag 1-2 day concentrations, using city-merged data.

Supplemental Material, Table 3.Excess risk (%, 95% CI) of mortality for a 10-μg/m³ increase in lag 1-2 day O₃ concentrations by sensitivity analyses with variation in methods and concentration levels.

Supplemental Material, Table 1. Effect estimates (%, 95% CI) of O₃, NO₂ and PM₁₀ on total, cardiovascular and respiratory mortality per IQR^a increase in lag 1-2 day concentrations, using city-merged data.

Mortality	O ₃	NO_2	PM ₁₀
Total	5.31 (4.06 to 6.56)	5.97 (4.93 to 7.02)	4.42 (3.45 to 5.40)
Cardiovascular	6.65 (4.62 to 8.72)	6.48 (4.81 to 8.18)	5.14 (3.58 to 6.73)
Respiratory	8.77 (5.82 to 11.81)	10.80 (8.41 to 13.24)	7.18 (4.95 to 9.46)

Note: ^aIQR (μg/m³): 63.8 for O₃, 30.8 for NO₂and 55.2 for PM₁₀ at average lag 1-2 days; Poisson regression model controlled for time trend, temperature, RH, year, DOW, public holiday and influenza epidemics.

Supplemental Material, Table 2.Effect estimates (%, 95% CI) of O_3 , NO_2 and PM_{10} on subcategories of cardiovascular and respiratory mortality per $10\mu g/m^3$ increase in lag 1-2 day concentrations, using city-merged data.

Mortality	O_3	NO ₂	PM_{10}
Cardiovascular	1.01 (0.71 to 1.32)	2.12 (1.58 to 2.65)	0.91 (0.64 to 1.19)
Coronary	0.79 (0.36 to 1.22)	1.79 (1.04 to 2.55)	0.93 (0.54 to 1.31)
Stroke	1.17 (0.65 to 1.70)	2.58 (1.66 to 3.51)	1.02 (0.55 to 1.49)
Respiratory	1.33 (0.89 to 1.76)	3.48 (2.73 to 4.23)	1.26 (0.88 to 1.65)
COPD	1.16 (0.56 to 1.77)	2.97 (1.95 to 4.00)	1.32 (0.79 to 1.86)

Note: Poisson regression model controlled for time trend, temperature, RH, year, DOW, public holiday and influenza epidemics.

Supplemental Material, Table 3.Excess risk (%, 95% CI) of mortality per - μ g/m³ increase in lag 1-2 day O_3 concentrations by sensitivity analyses with variation in methods and concentration levels.

Total mortality	ER	95% CI
Main analysis	0.81	0.63 to 1.00
Add temperature at lag 2-3 days	0.70	0.51 to 0.89
Add temperature at lag 4-6 days	0.63^{a}	0.44 to 0.82
- 25% df for time smoothing	0.75	0.57 to 0.94
+ 25% df for time smoothing	0.85	0.66 to 1.04
- 25% df for meteorological smoothing	0.88	0.70 to 1.06
+ 25% df for meteorological smoothing	0.81	0.62 to 1.01
Omit $O_3 > 95$ th percentile (166.6 μ g/m ³)	0.82	0.60 to 1.04
Omit O_3 < 5th percentile (18.3µg/m ³)	0.78	0.59 to 0.98

Note: ^aER changed > 20% from the main analysis.